The three most specified Ankorsteel grades
In the powder production process used to make Ankorsteel, molten steel is atomized into irregular, homogeneous particles which are then annealed to produce the uniform, dependable steel powders designated as "Ankorsteel". Ankorsteel grades are designed for P/M parts requiring densities exceeding 6.7 g/cm³.

Ankorsteel 1000
This is the workhorse of our atomized powders, the material that has advanced P/M into the modern age of higher density compacts. More P/M components have Ankorsteel 1000 as their base than any other atomized powder.

It has low levels of carbon and oxygen along with good compressibility. Ankorsteel 1000 provides excellent physical properties with small additions of graphite, copper, or nickel. Ankorsteel 1000 is also available with guaranteed low levels of inclusions for powder forging applications.

Ankorsteel 1000B
Ankorsteel 1000B is the second generation of atomized high compressibility powders. High purity provides greater compressibility than Ankorsteel 1000; densities of 6.8 g/cm³ at 410 MPa (30 tsi) are commonly achieved.

The combination of purity, compressibility, and green strength makes Ankorsteel 1000B ideal for high strength, high density, multi-level structural components.

Ankorsteel 1000C
This is the highest compressibility iron powder available. Compressibility ratings of 7.1 g/cm³ at 550MPa (40 tsi) provide outstanding sintered properties at lower compacting pressures. With Ankorsteel 1000C, you can achieve densities equivalent to other powders with lower compacting pressures, and thus extend the effective working range of your compacting press. Due to its low oxygen and nitrogen levels, Ankorsteel 1000C is also used extensively for electromagnetic applications.

Why Ankorsteel 1000 series powders are preferred
- **Purity**—Special melt practices and select raw materials input give us consistently lower levels and better control of residual and tramp elements.
- **Compressibility**—Strict controls in annealing and iron powder screening result in the highest compressibility powders available.
- **Green Properties**—The technology of iron powder atomization and control of particle shape provide parts with uniform green density and excellent strength.
- **Sintered Strength**—Purity, compressibility and excellent green properties create higher strength components when sintered than are possible with lesser quality materials.
- **Quality**—Uniform, high volume production utilizing state-of-the-art SPC techniques at each processing stage assures the highest standards of consistency.
Ankorsteel® 1000C

Typical Analysis and Properties

<table>
<thead>
<tr>
<th>Composition (weight %) (w/o)</th>
<th>C</th>
<th>O</th>
<th>N</th>
<th>S</th>
<th>P</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
<th>Cu</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.01</td>
<td>0.07</td>
<td>0.001</td>
<td>0.007</td>
<td>0.004</td>
<td><0.01</td>
<td>0.07</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

Apparent Density
- 2.92 g/cm³

Flow Rate
- 25 s/50g

Sieve Distribution (w/o)

<table>
<thead>
<tr>
<th>Micrometers</th>
<th>+250</th>
<th>-250 / +150</th>
<th>-150 / +45</th>
<th>-45</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Standard Mesh</td>
<td>(+60)</td>
<td>(-60 / +100)</td>
<td>(-100 / +325)</td>
<td>(-325)</td>
</tr>
<tr>
<td>Trace</td>
<td>17</td>
<td>70</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

The Effect of Compaction Pressure on the Green Density and Green Strength of Ankorsteel 1000C

- **Green Density**
 - Compaction Pressure (tsi)
 - Green Density (g/cm³)
 - 0.5% Zinc Stearate

- **Green Strength**
 - Green Strength (MPa)
 - Green Density (g/cm³)
1. Test specimens were pressed to various densities, sintered in dissociated ammonia at 1120°C (2050°F) for 30 minutes at temperature.
2. The alloy mixes contained 2.0 w/o copper or 2.0 w/o nickel. The FN-0205 and FC-0205 mixes contained 0.6 w/o graphite, whereas the FN-0208 and the FC-0208 mixes contained 0.9 w/o graphite.
3. All mixes contained 0.5 w/o zinc stearate as a lubricant.
4. The dimensional change values represent the percentage from die size in accordance with ASTM B 610.
Tensile Properties

Carbon Steels

Ultimate Tensile Strength

Graphite Addition (wt%)

- 0.4
- 0.8
- 0.6
- 1.0

Yield Strength

- 0.2% Offset Yield Strength (MPa)

- 0.2% Offset Yield Strength (10^3 psi)

Tensile Elongation

Elongation [% in 2.54 mm (1 inch)]

1. Tensile test specimens using the flat unmachined test bars were prepared and tested in accordance with ASTM E 8.
2. The alloy mixes contained 2.0 w/o copper or 2.0 w/o nickel. The FN-0205 and FC-0205 mixes contained 0.6 w/o graphite, whereas the FN-0208 and the FC-0208 mixes contained 0.9 w/o graphite.
3. All mixes contained 0.5 w/o zinc stearate as lubricant.
1. Specimens were austenitized at 845°C (1550°F) for 15 minutes at temperature followed by quenching in oil at 65°C (150°F). The atmosphere was dissociated ammonia with methane additions. The quenched parts were tempered for one hour at 205°C (400°F) in air.
2. The alloy mixes contained 2.0 w/o copper or 2.0 w/o nickel. The F-0005, FN-0205 and FC-0205 mixes contained 0.6 w/o graphite.
3. All mixes contained 0.5 w/o zinc stearate as a lubricant.
4. The dimensional change values represent the percentage from die size in accordance with ASTM B 610.

IMPORTANT NOTICE: The data shown are based on laboratory processing standard test specimens. Results may vary from those obtained in production processing.