THINK Filter Technology

SIKA-R... IS/AS

ENGINEERING THAT MOVES THE WORLD
GKN Sinter Metals Filters, the leading manufacturer of porous sinter metal products, offers a variety of solutions to fulfil customer requirements. We are familiar with various applications in almost every industrial branch. Our products are applied in gas- and liquid filtration, dampening, sparging, sensor protection, bulk handling and many more. We offer solutions for high temperature and corrosive environments.

Sintered filter elements made of stainless steels, bronze, nickel based alloys, titanium and several special alloys can be manufactured seamless up to 1,600 mm length and 320 mm OD. Larger elements will be assembled in our certified in-house welding shop. Our most innovative product for the chemical industry is the patented metallic membrane SIKAR…AS.

The filter cartridges equipped with this state-of-the-art technology offer a flow rate up to 4 times higher compared to conventional sinter metal filter cartridges. Furthermore an excellent back flush performance is guaranteed. The filter active membrane layer with filter grades down to 0.1 µm absolute has a thickness of only 200 µm and is made of the same alloy as the coarse support material. The membrane is sinter bonded to the support and therefore cannot peel off.

Another innovation introduced by GKN is the sinter bonded joint of porous parts with solid fittings in order to avoid welding seams – the weak spot of all sintered cartridges of our competitors.

All sintered materials of GKN offer a self-supporting structure with high mechanical strength.

We manufacture various filter grades with specified pore sizes and flow rates in order to have the appropriate solution for your requirements.
Filter-Elements
High Porosity Sintered Materials
SIKA-R...IS

SIKA-R...IS, a trademark of GKN Sinter Metals Filters, is our brand name for high porous stainless filter elements manufactured by our isostatic compaction process.

Metal Membranes
SIKA-R...AS

SIKA-R...AS, a trademark of GKN Sinter Metals Filters, is our brand name for high porous asymmetric metallic membranes.

SIKA-R...IS/AS materials are used as self-supporting structural elements. The pores are mechanically fixed regarding size and position after the sintering process.

Properties

These characteristics go along with the following important properties of SIKA products:

- Shape-stability, i.e. self-supporting structural elements suitable for high differential pressures and pressure swings
- Particularly good properties under compression, vibration and changing conditions or with high impulse pressures
- High heat resistance and thermal stability up to 900°C
- High permeability with low pressure drop
- Precise filtration because of homogeneous pore size distribution
- Chemical resistance against acids and caustic solutions in various aggressive media
- Backflushing and easy cleaning with supersaturated superheated steam, chemical solvents, thermal and ultrasonic processes
- The variety of materials used can be welded, soldered and machined
Improved Properties of ASymmetric Filters Compared to Conventional (Symmetric) Filters

Asymmetric design allows manipulation of stability and particle retention functions which are independent.

As a result of this optimal combination, metallic SIKA-R...AS membranes truly impress.

SIKA-R...AS elements have the following features which are particularly advantageous in rigorous every day applications:

- Up to 4-times increase in permeability performance
- Improved back-flushing properties, resulted out of reduced pressure drop
- Filtration in the sub-micrometer-range
- Significant increase in service life
- Economical use
- No filter cake needed for clear filtration

The asymmetric metallic membrane can be manufactured in tube or disc shape. The filter layer is applied to the outer surface of the tube. Standard wall-thicknesses are 1.5 mm, 2 mm and 3 mm. The filter effective layer of 0.2 mm is sintered on the support.

SIKA-R...AS has all the advantages that characterize other metallic filter elements:

The metallic membrane is dimensionally stable, resistant to fluctuating mechanical loading and thermal stress, can be used at high temperatures and in corrosive media.
Applications

SIKA-R...IS and SIKA-R...AS are employed in:

- Catalyst separation and recovery
- Refinery applications
- Gas- and Liquid filtration
- Aerosol separation
- Sparging
- Fluidization
- Air bearings for polymer sheet production
- Silencing

as well as in other fields of chemical and food processing industries, power engineering and environmental technology.

Further Applications of SIKA-R...AS

Metallic membranes can be used for various filtration jobs in chemical, food and pharmaceutical industries, also process engineering. Additionally, the energy and environmental sectors also use such elements.

The following is an exemplary list of keywords:

- Catalyst recovery in the chemical industry
- Cross-flow filtration
- Gas filtration
- Liquid filtration
- Analytical devices
- Medical devices
- Vegetable oil
Manufacturing of SIKA-R.../S and SIKA-R.../AS Products

Compaction

SIKA-R.../S filter elements are formed by cold isostatic pressing.

For the compaction process the metal powder is filled into the compaction tool which consists of a solid steel core and oversized outer rubber sleeve.

After sealing the filled assembly it is submerged into a vessel of hydraulic fluid.

The next step is to apply pressure onto the fluid which moves the outer rubber sleeve towards the steel core and forms the porous part by compressing the powder in between.

Due to the uniformity of the hydro pressure the porous element excels by its uniform porosity with homogeneous physical characteristics and properties over the complete part.

Sizes that can be achieved are up to 1600 mm length and 320 mm diameter.

Sintering

The compacted part is sintered in specially designed furnaces.

Sintering is the fundamental processing step for all Powdered Metal (P/M) products. It is the process of bonding the powder particles by fusing them together at temperatures well below their melting point.

After sintering, regardless of micron size, the separate grain structure of the original powdered metal becomes fully interlinked to form a rigid part.

Sintering gives the high porous material the shape stability and property of a strong metal component.
Solid Connection

Furthermore, GKN owns specific know-how to integrate a solid connection fitting into the porous part prior to the pressing process.

Due to the sintered joint, any further porous to solid welding seams are avoided. This increases the strength and the reliability of the porous elements.

Further treatment of SIKA-R...AS products

SIKA-R...AS denotes asymmetrically constructed metallic membranes.

Coating Technique

The metal membrane is produced by applying a layer of extremely fine metal powder onto carrier of coarser porosity, such as the standard sinter products of SIKA-R...IS or SIKA-R...AX.

The subsequent sintering produces an even metal coating of approximately 200 μm thickness so firmly bonded to the carrier as to exclude cracking and flaking in the layer.

Compared to the carriersupport, the sintered layer has significantly smaller pore size, so that during filtration particulate matter is retained on the filter coating surface. The support structure (carrier) has no discernible influence on the filtration process and merely serves to ensure pressure loss remains low.

As a result of years of development, the product offers users a sintered membrane that combines high permeability and very low pressure drop, yet retaining all the advantages of sintered metal filters.
Standard Powder Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Name</th>
<th>Mat.-No.</th>
<th>SIKA- Powder Materials</th>
<th>Fe</th>
<th>Cr</th>
<th>Ni</th>
<th>C</th>
<th>Mo</th>
<th>Si</th>
<th>Miscellany</th>
<th>Max. Temperature °C</th>
<th>Keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI 304L</td>
<td>1.4306</td>
<td>x x x</td>
<td>Bal.</td>
<td>18.0-20.0</td>
<td>8.0-12.0</td>
<td>≤0.03</td>
<td>≤0.1</td>
<td>≤2.5</td>
<td>-</td>
<td>600</td>
<td>500</td>
<td>Standard for food application</td>
</tr>
<tr>
<td>AISI 316 L</td>
<td>1.4404</td>
<td>x x x</td>
<td>Bal.</td>
<td>16.0-18.0</td>
<td>10.0-14.0</td>
<td>≤0.03</td>
<td>2.0-3.0</td>
<td>≤2.5</td>
<td>-</td>
<td>540</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>AISI 904L</td>
<td>1.4539</td>
<td>x x x</td>
<td>Bal.</td>
<td>19.0-21.0</td>
<td>24.0-26.0</td>
<td>≤0.03</td>
<td>4.0-5.0</td>
<td>≤2.3</td>
<td>Cu 1.0-2.0</td>
<td>600</td>
<td>500</td>
<td>Resistant against sulphuric, phosphoric and hydrochloric acid</td>
</tr>
<tr>
<td>AISI 310</td>
<td>1.4841</td>
<td>x</td>
<td>Bal.</td>
<td>24.0-26.0</td>
<td>19.0-22.0</td>
<td>≤0.20</td>
<td>-</td>
<td>≤2.5</td>
<td>-</td>
<td>800</td>
<td>600</td>
<td>Heat resistant</td>
</tr>
</tbody>
</table>

Nickel based alloys*

<table>
<thead>
<tr>
<th>Material</th>
<th>Name</th>
<th>Mat.-No.</th>
<th>SIKA- Powder Materials</th>
<th>Fe</th>
<th>Cr</th>
<th>Ni</th>
<th>C</th>
<th>Mo</th>
<th>Si</th>
<th>Miscellany</th>
<th>Max. Temperature °C</th>
<th>Keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hastelloy C22</td>
<td>2.4602</td>
<td>x x</td>
<td>2.0-6.0</td>
<td>20.0-22.5</td>
<td>Bal.</td>
<td>≤0.03</td>
<td>12.5-14.5</td>
<td>≤0.5</td>
<td>W 2.5-3.5 Co s2.5</td>
<td>650</td>
<td>650</td>
<td>Corrosion resistant with various aggressive media. Duration application at > 400 °C possible.</td>
</tr>
<tr>
<td>Hastelloy C 276</td>
<td>2.4819</td>
<td>x x</td>
<td>4.0-7.0</td>
<td>14.5-16.5</td>
<td>Bal.</td>
<td>≤0.03</td>
<td>15.0-17.0</td>
<td>≤0.8</td>
<td>W 3.0-4.5 Co s2.5</td>
<td>650</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td>Hastelloy X</td>
<td>2.4665</td>
<td>x x</td>
<td>17.0-20.0</td>
<td>20.5-23.0</td>
<td>Bal.</td>
<td>≤0.15</td>
<td>8.0-10.0</td>
<td>≤1.0</td>
<td>W 0.2-1.0 Co 0.5-2.5</td>
<td>930</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>Inconel 600</td>
<td>2.4816</td>
<td>x x x</td>
<td>6.0-10.0</td>
<td>14.0-17.0</td>
<td>Bal.</td>
<td>≤0.03</td>
<td>-</td>
<td>≤2.5</td>
<td>-</td>
<td>700</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Inconel 625</td>
<td>2.4856</td>
<td>x</td>
<td>≤4.00</td>
<td>20.0-24.0</td>
<td>Bal.</td>
<td>≤0.08</td>
<td>8.0-10.0</td>
<td>≤2.3</td>
<td>Nb 3.0-4.0</td>
<td>650</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td>Monel 400</td>
<td>2.4360</td>
<td>x x</td>
<td>≤1.0</td>
<td>-</td>
<td>≤63.0</td>
<td>≤0.05</td>
<td>-</td>
<td>≤1.0</td>
<td>Cu 28.0-34.0</td>
<td>500</td>
<td>500</td>
<td>Resistant against Cl-containing media</td>
</tr>
<tr>
<td>CuSn 11</td>
<td>2.1052 mod.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Sn 10.0-11.5 Cu bal.</td>
<td>300</td>
<td>250</td>
<td>Typically used for hydraulic and pneumatic media</td>
</tr>
<tr>
<td>Ti</td>
<td>- x x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ti ≥ 99 %</td>
<td>500</td>
<td>500</td>
<td>Medicine, acids and electrolysis</td>
</tr>
</tbody>
</table>

Other materials on request

Not all raw materials are in stock. Materials for fittings on request. Due to powder metallurgy process, there are slight deviations in the element composition compared to the material standards.

* Nickel based AX-products only after consultation. Not all dimensions feasible.

Filter Elements

High Porosity Sintered Materials SIKA-R...IS and SIKA-R...AS

All types of GKN-SIKA filter elements have following salient features:
- seamless construction up to 1,600 mm length
- seamless construction up to 320 mm diameter
- seamless assembly of solid flange and porous tube
- threads according to customers’ requirement

The construction without welding seams in the porous material provides best corrosion resistance and the fatigue strength is considerably higher compared to conventional welded constructions.

GKN Filter Grades

SIKA-R	0.1	AS
SIKA-R	0.3	AS
SIKA-R	0.5	IS
SIKA-R	0.5	AS
SIKA-R	1	IS
SIKA-R	1	AS
SIKA-R	2	AS
SIKA-R	3	IS
SIKA-R	3	AS
SIKA-R	5	IS
SIKA-R	8	IS
SIKA-R	10	IS
SIKA-R	15	IS
SIKA-R	20	IS
SIKA-R	30	IS
SIKA-R	50	IS
SIKA-R	80	IS
SIKA-R	100	IS
SIKA-R	150	IS
SIKA-R	200	IS
Standard Geometries

![Diagram of standard geometries](image)

Standard DOE Tubes

<table>
<thead>
<tr>
<th>Length in inches</th>
<th>Nominal Diameter in inches</th>
<th>Actual dimension in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3/4”</td>
<td>1”</td>
</tr>
<tr>
<td>MAX</td>
<td>19/16 x 1200</td>
<td>25.4/19 x 1260</td>
</tr>
<tr>
<td>7,5”</td>
<td>19/16 x 190,5</td>
<td>25.4/19 x 190,5</td>
</tr>
<tr>
<td>15”</td>
<td>19/16 x 381</td>
<td>25.4/19 x 381</td>
</tr>
<tr>
<td>30”</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>60”</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

* not possible as Sika-R ... AS; maximum length for Sika-R ... AS is 1,600 mm
The design with sinterbonded fittings and without porous to solid welding seams provides best corrosion resistance and fatigue strength is considerably higher compared to conventional welded constructions.
Additional Applications of GKN Filters

- Catalyst recovery
- Refinery
- Water treatment
Pneumatic valves

Ex-protection

Food shaping
Basic Information for Designing a Filter

1. Customer’s information

<table>
<thead>
<tr>
<th>Enquiry date:</th>
<th>Company name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact name:</td>
<td>Street address:</td>
</tr>
<tr>
<td>ZIP:</td>
<td>Email:</td>
</tr>
<tr>
<td>Town, US State:</td>
<td>Phone:</td>
</tr>
<tr>
<td>Country:</td>
<td>Mobile:</td>
</tr>
</tbody>
</table>

2. The planned application of the SIKA element?

<table>
<thead>
<tr>
<th>Filtration</th>
<th>Separation</th>
<th>Equalizing</th>
<th>Silencing</th>
<th>Throttling</th>
<th>Protecting</th>
<th>Fluidising</th>
<th>Sparging</th>
<th>Degassing</th>
<th>Others</th>
</tr>
</thead>
</table>

3. What kind of gas or liquid will flow through the SIKA element?

- **Medium specification**
 - Operation density
 - Dynamic viscosity
 - Operation temperature
 - Operation flow rate
 - Absolute pressure before the SIKA element
 - Wanted or permissible pressure drop of clean filter
 - Max permissible pressure drop of used filter

4. Which particles must be retained by a SIKA element?

<table>
<thead>
<tr>
<th>Kind</th>
<th>Size of the particle</th>
<th>Shape of the particle</th>
<th>Filter grade</th>
</tr>
</thead>
</table>

5. How will the SIKA element be applied?

<table>
<thead>
<tr>
<th>Shape of the element</th>
<th>Tube</th>
<th>Cartridge</th>
<th>Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecting element</td>
<td>Disc</td>
<td>Other</td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td>Flange</td>
<td>Thread</td>
<td></td>
</tr>
<tr>
<td>Housing diameter</td>
<td></td>
<td>Quantity</td>
<td></td>
</tr>
</tbody>
</table>

6. Short description of the process:

GKN Sinter Metals Filters GmbH
Dahlenstraße 43
42477 Radevormwald
GERMANY
Phone: +49 (0) 2195 609 0
Email: filters@gknpm.com
www.gknpm.com/filters
Further Brochures Available
Our locations:

- Head Quarter and Manufacturing
- Local Sales Partners

GKN Sinter Metals Filters GmbH
Dahlienstraße 43
42477 Radevormwald
GERMANY

Phone: +49 (0) 2195-609-0
E-Mail: filters@gknpm.com
www.gknpm.com/filters